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Abstract—In this paper, we propose a new synchronization-
inspired co-clustering algorithm by dynamic simulation, called
CoSync, which aims to discover biologically relevant subgroups
embedding in a given gene expression data matrix. The basic
idea is to view a gene expression data matrix as a dynamical
system, and the weighted two-sided interactions are imposed
on each element of the matrix from both aspects of genes and
conditions, resulting in the values of all element in a co-cluster
synchronizing together. Experiments show that our algorithm
allows uncovering high-quality co-clusterings embedded in gene
expression data sets and has its superiority over many state-
of-the-art algorithms.

Keywords-co-clustering; gene expression data; synchroniza-
tion;

I. INTRODUCTION

Co-clustering has been proved to be a powerful tool
for knowledge discovery in a large variety of applications,
such as text mining [1] and bioinformatics [2]. Instead
of clustering one set of objects, co-clustering algorithms
aim at finding subgroups by clustering rows and columns
simultaneously. The derived subgroups (also referred as co-
clusters) usually bring some deep insights into the data. For
the gene expression data, co-clusters characterize subsets of
genes which are co-regulated under a particular subset of
experimental conditions. Discovering such patterns may be
the key to uncover many genetic pathways. To present, many
co-clustering algorithms have been proposed for microarray
analysis based on different criteria, such as mutual infor-
mation [1], graph cut [3] and residue [2]. However, each
criterion comes with specific advantages and drawbacks. For
example, the well-known residue-based methods [2] often
employ iterative strategies to simultaneously identify co-
clusters with coherent values in both rows and columns,
allow identifying a good “checkerboard” structure. However,
the assumed “checkerboard” structure ( also existed in
information-theoretic methods and graph-based methods) is
not ideal. Beyond, the number of gene clusters and condition
clusters need to be specified, which are usually not available
in real-world applications.

In this paper, we consider the co-clustering problem from
a new aspect: Synchronization. We will see this new view-
point supplements an intuitive way to discover co-clusters,
and has several attractive properties. But let us first illustrate
the basic idea.

A. Basic idea

Synchronization is a phenomenon that a group of events
spontaneously come into co-occurrence with a common
rhythm, despite of the differences between individual
rhythms of the events [4]. To present, synchronization phe-
nomena in nature have been widely investigated and many
models concisely describing the dynamical synchronization
process have been proposed [4], [5]. The basic philosophy
of synchronization-based models is to dynamically simulate
the synchronization process by imposing the interactions on
local or global objects, resulting in objects are gradually
synchronized together and have the same phase. Therefore,
motivated by the existing models, we extend the notion
of synchronization into the context of co-clustering, and
propose a new algorithm, called CoSync.

To illustrate the formation of synchronized co-clusters
by dynamic simulation, Figure 1 gives a simple example.
Considering a given artificial gene expression matrix, for
each element (aij), we first use its associated gene (i.e. ai.)
and condition (i.e. a.j) to search similar genes and con-
ditions, respectively (see Figure 1 (b)). Subsequently, each
element will interact with its similar genes and conditions
simultaneously in a weighted way. Specifically, if its similar
genes or conditions are similar, the interaction will be strong,
and vice versa. The detailed two-sided weighted interac-
tion model will be elaborated in Section III-D. Through
the weighted interactions, the difference among values of
elements in a co-cluster will decrease and become zero
gradually. Finally, after the dynamic simulation, we can
identify the co-clusters by simply searching the subsets
of genes and conditions with the same values. For better
visualization, Figure 1 plots the shuffled resulting data
matrix after dynamic simulation, where we can observe that
the co-clusters are intuitively popped out as all elements
in the same co-clusters are synchronized together (i.e. all
elements in the green rectangles in Figure 1).

II. RELATED WORK

Due to space limitation, for a comprehensive survey of co-
clustering to gene data analysis, please refer to the recent
paper by Pontes et al. [6]. Here, we only provide a very
brief survey on some major research directions.

Information-theoretic methods. The key idea of these
methods [1], [7] is to consider the problem of co-clustering
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Figure 1: Illustration of co-cluster formation by simulating the synchronization process with a weighted two-sided interaction
model. (a) The original gene expression data matrix, where the rows correspond the genes while the columns indicate the
different conditions, and each element with different levels of gray colors indicate its value. (b) Relying on the weighted
two-sided interactions, the value of each element will change over time, where the values of elements among each co-cluster
tend to synchronize together gradually. The blue and yellow arrows indicate each element interact with its similar conditions
and genes, respectively. (c) The final state of data matrix after shuffling, where co-clusters are popped up visually.

as a data compression problem based on information theory.
The identification of co-clusters is to optimize some criteria,
such as mutual information, Bregman divergence, subject
to some constraints. The most fundamental technique in
this line is ITCC [1], which views a nonnegative matrix as
the estimate of an empirical joint probability distribution of
two discrete random variables, and presents an algorithm to
reduce the loss of mutual information between the original
data matrix and the compressed representation provided
by the co-clustering. Recently, Song et al. [7] propose
an approach called constrained information-theoretic co-
clustering, which integrates constraints into the informa-
tion theoretic co-clustering framework and employs KL-
divergence to improve clustering performance.

Graph-based Methods. In graph-based co-clustering ap-
proaches, a data matrix is constructed as a bipartite graph be-
tween rows and columns. The identification of co-clusterings
is thus formulated as a problem of graph partitioning. For
instance, in [8], Dhillon formalizes this idea by modeling
document collection as a bipartite graph between documents
and words, using the second left and right singular vectors to
yield good bipartitionings. The similar idea is also employed
in [9], where the partition is constructed by minimizing a
normalized sum of edge weights between unmatched pairs
of vertices of the bipartite graph.

Residue-based Methods. The type of residue-based
methods refers to a class of techniques by optimizing
the objective function of residue, which is widely used
in expression data analysis. Cheng and Church [10] are
considered to be the first to apply co-clustering to gene
expression data to generate co-clusters that satisfy mean
squared residue. Following this idea, Cho et al. [2] develop
a popular co-clustering algorithm, Minimum Sum-Squared
Residue Co-clustering (MSSRCC), which tries to escape
the local minima and resolve the degeneracy problem in

partitioned clustering algorithms. Lazzeroni and Owen [11]
propose the plaid models for gene expression data analysis,
which is viewed as a merger of clustering and ANOVA
methods, and allows exploring the overlapping clusters.

III. CO-CLUSTERING BY DYNAMIC SIMULATION

In this section, we present our CoSync algorithm for co-
clustering of gene expression data. In the following, we start
with some basic notations.

Notations. Here we introduce some notations used in the
remaining of the section. Formally, given the matrix A =
(AI , AJ) with set of rows AI and set of columns AJ , ai. ∈
AI indicates the ith row vector, and a.j ∈ AJ represents the
jth column vector. A co-cluster is a submatrix A(IS , JS),
where IS is the indices of a subset of the rows AI , JS is the
indices of a subset of the columns AJ . aij is the value of
element Aij corresponding to the ith row and jth column.

A. Two-sided Weighted Interaction Model

To uncover the co-cluster structure of a given gene ex-
pression data by dynamic simulation, the interaction model
is essential. Currently, most existing interaction models
(e.g.[4], [12], [5]) are often one-sided and in an unweighted
way. However, since we are interested in co-clusters, the
interactions should be imposed on both sides of genes and
conditions in a local weighted fashion. In the following, we
will formulate our interaction model based on the above two
aspects.

DEFINITION 1 (ε-RANGE NEIGHBORHOOD) Given a
data matrix A and ε ∈ R, the ε-range neighborhood of a
row vector ai. ∈ AI (or a column vector a.j ∈ AJ ), denoted
as Nr

ε (ai.) (or N c
ε (a.j)), is defined as:

Nr
ε (ai.) = {p∣∣dist(ap., ai.) ≤ ε, p ∈ I} (1)
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where dist(·, ·) is a metric distance function, and the Eu-
clidean distance is used in this study.

Based on the Kurumoto model, like existing
synchronization-based models [13], we formulate our
two-sided interaction model as follows.

DEFINITION 2 (TWO-SIDED INTERACTION MODEL)
Let aij be the value of an element Aij . Given an ε-range
row and column neighborhood, respectively, the dynamics
of the element Aij of two-sided interaction from both rows
and columns is defined as:

aij(t+1) = aij(t)+
1

2|Nr
ε (ai.(t))|

·
∑

p∈Nc
ε (ai.(t))

sin(apj(t)−aij(t))

(2)

+
1

2|N c
ε (a.j(t))|

·
∑

q∈Nr
ε (a.j(t))

sin(aiq(t)− aij(t))

where sin(·) is the coupling function, which is a wide
spreading function in almost all synchronization-based mod-
els (e.g. [4], [14]). aij(t + 1) describes the renewal value
of the element Aij at time stamp t + 1 (t = (0, . . . , T ))
during the dynamic simulation. The interaction model allows
investigating the dynamics of each element by coupling
the element discrepancies from sides of rows and columns
simultaneously.

However, as we state above, we only expect the sim-
ilar genes under similar conditions to group together by
dynamic interaction. Therefore, the interactions among el-
ements should be considered differently. An intuitive way
is to examine the distribution of expressed values of similar
genes or conditions. Specifically, we first examine the dispar-
ities between the elements of similar genes (or conditions)
and the element Aij , and then use the standard deviation of
the disparities to determine the coupling strength. We expect
that the deviation tend to be small if the similar genes are
co-regulated or the similar conditions are similar.

DEFINITION 3 (WEIGHTING FACTOR) Given an ε-
range row neighborhood Nr

ε (ai.(t)) of the element Aij , the
weighting factor for similar genes is defined as:

wr(j) = e−λ·σj (3)

where σj is the standard deviation of the difference vector
νpj = {abs(apj − aij)

∣∣p ∈ Nr
ε (ai.(t))}. λ is a constant.

Empirical experiments indicate that λ = [50 − 150] often
produces promising results. In this paper, we set λ = 100
for all experiments. Similarly, the weighting factor for the
interactions of similar conditions is defined as:

wc(i) = e−λ·σi (4)

where σi is the standard deviation of the difference vector
νiq = {abs(aiq − aij)

∣∣q ∈ N c
ε (a.j(t))}.

Based on the weighting factor, the row and column
interactions at time stamp t can be computed as follows,
respectively.

Irow(t) =
wr(j)

2|Nr
ε (ai.(t))|

·
∑

p∈Nr
ε (ai.(t))

sin(apj(t)− aij(t)) (5)

Icol(t) =
wc(i)

2|N c
ε (a.j(t))|

·
∑

q∈Nc
ε (a.j(t))

sin(aiq(t)− aij(t)) (6)

Finally, the dynamics of each element is govern as fol-
lows.

aij(t+ 1) = aij(t) + Irow(t) + Icol(t) (7)

To characterize the level of synchronization among el-
ements during the dynamic simulation process, an order
parameter r is defined to measure the coherence of the local
population of elements.
DEFINITION 4 (ORDER PARAMETER) The order pa-
rameter r is used to terminate the dynamic simulation by
investigating the degree of local synchronization, which is
defined as:

r =
1

2|I|
|I|∑

i=1

1

|Nr
ε (ai.)|

∑

p∈Nr
ε (ai.)

e−||ap.−ai.|| (8)

+
1

2|J |
|J|∑

i=1

1

|N c
ε (a.j)|

∑

q∈Nc
ε (a.j)

e−||a.q−a.j ||

The dynamic simulation terminates when r(t) converges,
which indicates local coherence.

B. Synchronized Co-clusters Search

After the simulation of dynamics of elements based on our
weighted two-sided interaction model, the values of elements
with co-regulated genes under a certain set of conditions
will synchronize together. The search of these co-clusters
is to find the particular subset of rows and columns that
share the same value. For this purpose, we first identify all
distinct values of elements in the resulting data matrix after
dynamic simulation. If the count of one distinct value is
smaller than a given size, e.g. minSize = 100, the value
is removed. Otherwise, for each distinct value (e.g. c), we
search the maximal block of same values with constraints of
minimum rows and columns, which is actually a maximum
closed frequent itemset mining problem. Here we apply the
popular CHARM algorithm [15].

C. Speed up Range Search for High-dimensional Data via

Non-negative Matrix Factorization

Nonnegative matrix factorization: Given a nonnegative
matrix A ∈ R

m×n and an integer k < min(m,n), the goal
of NMF is to find two factor matrices W ∈ R

m×k and
H ∈ R

n×k, so that

min
W≥0,H≥0

f(W,H) = ||A−WHT ||2F (9)
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Algorithm 1 CoSync
1: Input: A, minRow, minCol

2: A = norm(A); //row or column normalization
3: if LargeFlag == TRUE then
4: [W, H] = NMF(A); //non-negative matrix factorization
5: end if
6: while LoopFlag == TRUE do
7: // Interactions of genes
8: for each gene vector ai. ∈ A do
9: if LargeFlag == TRUE then

10: Search its ε-neighborhood Nr
ε (ai.) on W ;

11: else
12: Search its ε-neighborhood Nr

ε (ai.) on A;
13: end if
14: for each condition j ∈ J do
15: Calculate the weighting factor w(j) with Eq. (3);
16: Compute row interactions with Eq. (5);
17: end for
18: end for
19: // Interactions of conditions
20: for each condition vector a.j ∈ A do
21: if LargeFlag == TRUE then
22: Search its ε−neighborhood Nc

ε (a.j) on H;
23: else
24: Search its ε−neighborhood Nc

ε (a.j) on A;
25: end if
26: for each gene i ∈ I do
27: Calculate the weighting factor w(i) with Eq. (4);
28: Compute column interactions with Eq. (6);
29: end for
30: end for
31: Update the matrix A with Eq. (7);
32: Compute order parameter r with Eq. (8);
33: if r converges then
34: LoopFlag = false;
35: end if
36: end while
37: //Find co-clusters
38: for each distinct value c do
39: Find the maximum co-cluster with CHARM;
40: end for
41: find all co-clusters C;

42: Output: C;

Where |||̇|2F is the Frobenius norm. In the context of microar-
ray analysis, A corresponds to the gene expression data ma-
trix. With this matrix factorization, we can observe that each
gene (i.e. A(i, :)) can be written by A(i, :) = W (i, :) ·HT ,
and each condition is represented as A(:, i) = W ·H(:, i).
The two matrices allow capturing the genes similarity and
condition similarity, respectively. For instance, given a par-
ticular gene, if we want to search its similar genes with a
given range, we do not need to search on the original data
matrix, instead of performing range search on the matrix W .
It is important to note that we just use NMF for speeding up
the similar conditions or genes search. Therefore, this step
is optional. In this study, we set k = 5 for all experiments.

D. CoSync Algorithm

Building upon the interaction model (cf. Eq. (7)), the
dynamical change of values for each element can be sim-
ulated. For illustration, Figure 2(a)-(d) shows the detailed
process of dynamical change of an artificial data matrix
from T = 0 to T = 30. Figure 2(a) plots the original data
matrix. From T = 1 to T = 30, the value of each element
will change dynamically based on the influence from its
similar genes and similar conditions simultaneously. Finally,
elements within a co-cluster will synchronize together and
share the same value. During the process, the order param-
eter, characterizing the level of local synchronization will
gradually converge (Figure 2)(e). Finally, the Pseudocode of
CoSync is given in Algorithm 1.

E. Time Complexity

For synchronization-based co-clustering, the runtime com-
plexity with respect to the number of genes M and the
number of conditions N is O(T · (M2N +N2M)), where
T is the iterations. If there exists an efficient index, the
complexity reduces to O(T ·(M logMN+N logNM)). For
NMF, its complexity is O(MN). The computational cost of
searching co-cluster is O(l · |C|) [15], where l is the average
row and column length and C is the set of all identified co-
clusters.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Data sets. We evaluate the proposed method CoSync on
synthetic data and different genres of real-world gene ex-
pression data sets.

Synthetic Data. Here, to prove the concepts, we generate
a flexible co-clusters in the data matriX. For each implanted
co-cluster, the values of elements are generated based on the
Gaussian distribution N(μ, σ), of which the mean values μ
vary in the range of (0, π

2 ) and the standard deviations σ
keeps set 0.1. For the other elements, the values follow the
uniform distribution U(0, π

2 ).
Real-world Data. To evaluate the performance of our

co-clustering algorithm, we further perform the experiments
on four different genres of gene expression data sets1: Colon
Cancer, Leukemia, Lung, and MLL, which are widely used
for previous evaluation of co-clustering algorithms for gene
expression data analysis. The preprocessing has been done
with the same procedure in MSSRCC [2].
Selection of comparison methods. We compare CoSync
to several representatives of co-clustering paradigms: the
information-theoretic co-clustering algorithm: ITCC [1], a
well-known residue-based co-clustering algorithm MSSRCC
[2], the well-known overlapping co-clustering algorithm
based on plaid models [11] and a graph-based co-clustering
algorithm via spectral method [3].

1Data sets and corresponding gene names and IDs are publicly available
at http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html
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(a) Original data matrix (b) T = 1 (c) T = 5 (d) T = 30 (e) Order parameter

Figure 2: Illustration of the co-clusters formation based on dynamic simulation. (a). The original data matrix, where two
co-clusters are embedded. (b) - (c). The dynamical changes of elements over time, where the values are aligned with its
similar genes and conditions over time. (d). The final state of data matrix at time stamp T = 30, the elements in the same
co-clusters synchronize together. (e). The order parameter.

(a) Original Data (b) Shuffled data (c) CoSync (d) ITCC (e) MSSRCC (f) Spectral (g) Plaid

Figure 3: Comparing co-clustering algorithms on an artificial synthetic data set with flexible co-cluster structure. Here the
blocks with colors means the detected co-clusters by different algorithms.

Table I: The quality of co-clusters found by CoSync algorithm, which is evaluated from sample clustering. Here P and
R represent the precision and recall for each co-cluster. No.G. and No.S. are the number of genes and samples in this
co-cluster. N and T represent normal and tumor tissues, respectively. A and M represent ADCA and MPM respectively.
AL, AM and ML represent ALL, AML and MLL respectively.

Colon Leukemia Lung MLL
cID Size No.G. No.S. P R Size No.G. No.S. P R Size No.G. No.S. P R Size No.G. No.S. P R

1 1480 296 5(N) 1.00 0.23 3216 268 12(7AL/5AM) 0.58 0.15 5614 401 14(A) 1.00 0.09 4228 302 14(AM) 1.00 0.50
2 966 138 7(5N/2T) 0.71 0.23 2570 514 5(4AM/1AL) 0.80 0.16 4394 338 13(M) 1.00 0.42 3765 251 15(AL) 1.00 0.63
3 666 111 6(T) 1.00 0.15 2320 464 5(AL) 1.00 0.11 3960 264 15(A) 1.00 0.10 2954 211 14(AL) 1.00 0.58
4 510 85 6(5N/1T) 0.83 0.23 1480 296 5(AL) 1.00 0.11 3806 346 11(M) 1.00 0.36 2071 109 19(AM) 1.00 0.68
5 420 84 5(N) 1.00 0.13 1215 243 5(AM) 1.00 0.20 2344 293 8(A) 1.00 0.05 1584 99 16(AM) 1.00 0.57
6 290 58 5(T) 1.00 0.13 625 125 5(AL) 1.00 0.11 2210 221 10(M) 1.00 0.32 918 102 9(AL) 1.00 0.38
7 205 41 5(T) 1.00 0.13 320 64 5(AL) 1.00 0.11 1770 177 10(M) 1.00 0.32 890 89 10(AL) 1.00 0.42
8 125 25 5(T) 1.00 0.13 294 49 6(AM) 1.00 0.24 1035 115 9(M) 1.00 0.29 715 143 5(3ML/2AL) 0.60 0.15
9 65 13 5(T) 1.00 0.13 264 22 12(AL) 1.00 0.26 950 190 5(A) 1.00 0.03 533 41 13(AM) 1.00 0.46
10 49 7 7(T) 1.00 0.13 242 22 11(AL) 1.00 0.23 420 30 14(M) 1.00 0.45 510 34 15(AM) 1.00 0.54

B. Proof of Concept

Here, we examine whether CoSync allows finding flex-
ible co-cluster structure on a synthetic data set. Figure 3

Table II: Co-clustering performance of different algorithms
on gene expression data sets from sample-based evaluation.

CoSync Plaid ITCC MSSRCC Spectral
#C Pre. Rec. #C Pre. Rec. #C Avg. #C Avg. #C Avg.

Colon 11 0.95 0.66 4 0.71 0.66 2 0.82 2 0.86 2 0.73
Leukemia 28 0.96 0.71 2 0.81 0.43 2 0.95 2 0.93 2 0.74

Lung 23 1.00 0.96 3 1.00 0.50 2 0.85 2 0.99 2 1.00
MLL 23 0.99 0.67 4 0.88 0.88 3 0.83 3 0.93 3 0.64

plots the clustering results of different algorithms. CoSync
allows finding all the four co-clusters with distinct sizes
successfully. However, ITCC, MSSRCC and Spectral are
difficult to find these co-clusters. The reason behind it is that
these algorithms assume a potential checkerboard structure,
and they tend to fail if the truly co-clusters do not follow
such assumption. For Plaid, although it aims at exploring
overlapping co-clusters, only one cluster is correctly found.

C. CoSync on Gene Expression Data

1) Sample-based Evaluation of Co-clusterings: For the
four gene expression data sets, since we have known the
sample categories, we first evaluate the co-clusterings gen-
erated by different algorithms from the sample aspect. Table
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I summarizes the precisions and recalls of the top ten co-
clusters detected by CoSync on the four data sets. We
can observe that CoSync allows finding high-quality co-
clusters. For instance, on the Colon data set, CoSync finds 11
clusters and all clusters correspond to a perfect match with a
corresponding type (normal tissue or tumor issue) except 2
clusters, where in total 3 samples are wrongly grouped. The
good clustering results can also be found on the Leukemia
and MLL data sets. More impressively, CoSync allows a
perfect grouping of samples on the Lung data set. To further
evaluate the performance of CoSync, ITCC, MSSRCC, Plaid
and Spectral algorithms are also employed to find co-clusters
on these data sets. Table II gives a summary of average
sample clustering performance, and we can see CoSync also
shows its superiority over other comparing algorithms.

2) Gene-based Evaluation of Co-clusterings: In this sec-
tion, we evaluate the statistical significance of the interesting
gene clusters (i.e. the enrichment of functional annotations)
generated by CoSync with the help of the Gene Ontology
database on three categories of annotations: “Molecular
Function”, “Biological Process” and “Cellular Component”.
We use the DAVID software to find the significantly enriched
for functional annotations of the gene set in each co-cluster,
which is publicly available at https://david.ncifcrf.gov. We
notice that all generated gene clusters allow a good enrich-
ment for the three categories (with both a large number
of enriched annotations and corresponding small p-values
(all p-values are lower than 0.05)). The results indicate that
CoSync also allows finding high-quality co-clusters from
gene aspect (biological significant clusters).

V. CONCLUSION

In this paper, we introduce a new co-clustering algorithm,
CoSync, to uncover the co-cluster structure of gene expres-
sion data sets based on synchronization-inspired dynamic
simulation. By coupling the elements with a weighted two-
sided mode, the values of these elements of co-regulated
genes under a particular set of experimental conditions tend
to synchronize together to automatically form co-clusters.
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